

Press Release

From Decarbonization to "Utilized Carbon": Launching Joint Research Into Next-

Generation Concrete Technologies

Kajima Corporation Takenaka Corporation Denka Company Limited

Kajima Corporation (President: Hiromasa Amano, "Kajima," hereafter), Takenaka Corporation (President: Masato Sasaki, "Takenaka," hereafter) and Denka Company Limited (President: Toshio Imai; "Denka," hereafter) have agreed to jointly research techniques to create carbon-negative concrete^{*1} by combining the three companies' technologies.

With efforts to achieve carbon neutrality by 2050 picking up speed around the world, reducing CO_2 emissions has become an urgent domestic issue. Cutting CO_2 emissions is also a pressing challenge for the construction sector. Concrete is widely used in the sector as a construction material, and since the concrete manufacturing process generates significant CO_2 emissions, reducing those emissions would have a tremendous effect.

The joint research aims to create and promote the full-scale adoption of a higher level general-purpose carbon-negative concrete by utilizing CO₂-absorbing concrete and CO₂-absorbed concrete materials based on concrete that significantly reduces CO₂ emissions.

For the concrete that significantly reduces CO_2 emissions, Takenaka, Kajima and others have jointly developed ECM (Energy - CO2 Minimum), which can cut CO_2 emissions by sixty percent. As a concrete that absorbs CO_2 , Kajima and Denka were part of a group that developed CO_2 -SUICOM, the world's only CO_2 absorbing concrete that has been put to practical use. Meanwhile CCU material^{*2} technology, currently under development by Takenaka, will be utilized as a CO_2 -absorbed concrete material. Also note that the LEAF carbonating admixture developed by Denka is utilized as a key material in CO_2 -SUICOM.

By combining and developing these three technologies, the companies will develop carbon-negative concrete to a level that could not be achieved through any one technology alone, evolving the combination into an innovative technology.

This joint research represents a shift from decarbonization to "utilized carbon", giving a new shape to the concrete that is an essential building block of the construction sector and creating a concrete of the future that helps reduce CO_2 emissions the more it is used.

*1: Carbon-negative concrete: A type of concrete that absorbs more CO_2 than the CO_2 emissions produced during its manufacturing.

*2: CCU: The acronym for <u>Carbon Capture and Utilization</u>

Conceptual diagram of CO₂-SUICOM

Materials contained in ECM cement

セメント工場	Cement plant	
セメント	Cement	
特殊混和材	Special admixture	
化学工場	Chemical plant	
副生消石灰	By-product calcium hydroxide	
大量のCO2を固定化	Fixing large amounts of CO ₂	
セメント使用量大幅低減	Significantly reduce cement usage	
普通ポルトランドセメント	Ordinary portland cement	
CO ₂ 排出原单位	CO ₂ emissions per production unit	
約766 (kg-CO½トン)	Approx. 766 (kg-CO ₂ / ton)	
少量成分	Small quantity ingredients	
高炉スラグ微粉末	Ground granulated blast-furnace slag	
(鉄鋼製造の副産物)	(By-product of steel manufacturing)	
CO2 排出原单位	CO2 emissions per production unit	
約26 (kg-CO ¹ /トン)	Approx. 26 (kg-CO ₂ / ton)	
高炉スラグ微粉末	Ground granulated blast-furnace slag	
製鉄所の溶鉱炉	Steel mill blast furnace	
ECM セメント	ECM cement	

<Reference>

- Features of ECM <u>https://www.takenaka.co.jp/solution/environment/ecm/</u>
- By using ECM cement, which replaces 60-70% of cement with ground granulated blast-furnace slag, a by-product of steel manufacturing, concrete CO₂ emissions can be reduced by 60 percent.
- In addition to significantly cutting CO₂ emissions, this reduces the drying shrinkage that causes cracking and improves resistance to deterioration from acids and salts, striking a balance between high quality and high durability.
- Features of CO₂-SUICOM <u>https://www.kajima.co.jp/tech/c_eco/co2/index.html#!body_02</u>
- More than half of the cement is replaced with LEAF, the carbonating admixture developed by Denka which uses by-products as a raw ingredients, and other industrial by-products such as ground granulated blast-furnace slag. In addition, by fixing large amounts of CO2 in the concrete during the manufacturing process, CO₂ emissions from manufacturing are effectively reduced to zero or lower. In other words, this is the world's first concrete that is able to reduce the amount of CO₂ in the atmosphere.
- The current CO₂-SUICOM product can reduce 18 kg of CO₂ in the atmosphere per 1m³.
- Features of LEAF

LEAF is a carbonating admixture composed mainly of calcium and silica. It actively reacts with CO_2 to produce chemically stable calcium carbonate. In addition, the carbonation reaction promotes structural densification when mixed with cement or concrete, increasing strength and durability.

- CCU Materials <u>https://www.nedo.go.jp/news/press/AA5_101332.html</u>
- CCU Materials are powders and granules that contain large amounts of calcium carbonate. They are being developed as part of research being conducted by Takenaka into CO₂ fixing processes utilizing cement waste materials and technologies to utilize by-products in the construction sector as part of a project promoted by the New Energy and Industrial Technology Development Organization (NEDO).

<for about="" from="" inquiries="" media="" press="" release="" this=""></for>	
Press Group, Public Relations Office, Kajima Corporation	Tel: +81-3-6438-2557
Public Relations Department, Takenaka Corporation	Tel: +81-3-6810-5140
Corporate Communications Dept., Denka Company Limited	Tel: +81-3-5290-5071